Search results for "G1 Phase Cell Cycle Checkpoints"

showing 10 items of 11 documents

Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes.

2018

Abstract Here a new series of twenty-one organoselenides, of potential protective activity, were synthesized and tested for their intrinsic cytotoxicity, anti-apoptotic and antioxidant capacities in oligodendrocytes. Most of the organoselenides were able to decrease the ROS levels, revealing antioxidant properties. Compounds 5b and 7b showed a high glutathione peroxidase (GPx)-like activities, which were 1.5 folds more active than ebselen. Remarkably, compound 5a diminished the formation of the oligodendrocytes SubG1 peak in a concentration-dependent manner, indicating its anti-apoptotic properties. Furthermore, based on the SwissADME web interface, we performed an in-silico structure-activ…

0301 basic medicineAntioxidantCell Survivalmedicine.medical_treatmentMolecular ConformationApoptosisCrystallography X-RayProtective Agents01 natural sciencesBiochemistryAntioxidantsCell Line03 medical and health scienceschemistry.chemical_compoundMyelinMiceStructure-Activity RelationshipOrganoselenium CompoundsDrug DiscoverymedicineAnimalsCytotoxicityMolecular Biologychemistry.chemical_classification010405 organic chemistryEbselenGlutathione peroxidaseOrganic ChemistryNeurodegenerationCells oligodendrocytesmedicine.diseaseG1 Phase Cell Cycle Checkpoints0104 chemical sciencesOligodendroglia030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryApoptosisDrug DesignReactive Oxygen SpeciesBioorganic chemistry
researchProduct

Depletion ofL-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes

2012

PMCID: PMC3494587

X-Box Binding Protein 1Proteasome Endopeptidase ComplexProgrammed cell deathXBP1CD3 ComplexMAP Kinase Signaling SystemRNA SplicingT-LymphocytesT cellDown-RegulationApoptosisRegulatory Factor X Transcription FactorsUbiquitin-Activating EnzymesProtein Serine-Threonine KinasesBiologyArginineLymphocyte ActivationAutophagy-Related Protein 7Jurkat cellsJurkat CellsEndoribonucleasesAutophagymedicineHumansMolecular BiologyCell ProliferationTOR Serine-Threonine KinasesAutophagyMembrane ProteinsCell BiologyBECN1Endoplasmic Reticulum StressG1 Phase Cell Cycle CheckpointsBasic Research Paper3. Good healthCell biologyDNA-Binding Proteinsmedicine.anatomical_structureCytoprotectionApoptosisUnfolded protein responseBeclin-1MitogensApoptosis Regulatory ProteinsLysosomesProto-Oncogene Proteins c-aktTranscription FactorsAutophagy
researchProduct

The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells.

2011

Lung cancer is a malignant disease with poor outcome, which has led to a search for new therapeutics. The PI3K/Akt/mTOR and Ras/raf/Erk pathways are key regulators of tumor growth and survival. In the present study, their roles were evaluated by MTT assay, flow cytometry and Western blotting in lung cancer cells. We found that a high efficacy of antitumor activity was shown with GDC-0941 treatment in two gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In addition, H460 cells with activating mutations of PIK3CA were relatively more sensitive to GDC-0941 than A549 cells with wild-type PIK3CA. Furthermore, GDC-0941 was highly efficacious in combination with U0…

MAPK/ERK pathwayCancer ResearchIndazolesLung NeoplasmsApoptosisBiologyBiochemistryPhosphatidylinositol 3-KinasesCarcinoma Non-Small-Cell LungCell Line TumorNitrilesGeneticsmedicineButadienesHumansMolecular BiologyProtein kinase BProtein Kinase InhibitorsPI3K/AKT/mTOR pathwayPhosphoinositide-3 Kinase InhibitorsSulfonamidesOncogeneCell growthMEK inhibitorTOR Serine-Threonine KinasesCancerDrug SynergismCell cyclemedicine.diseaseG1 Phase Cell Cycle Checkpointsrespiratory tract diseasesEnzyme ActivationOncologyCancer researchMolecular MedicineMitogen-Activated Protein KinasesSignal TransductionMolecular medicine reports
researchProduct

Synthesis, antiproliferative activity and possible mechanism of action of novel 2-acetamidobenzamides bearing the 2-phenoxy functionality.

2015

Several new 2-(2-phenoxyacetamido)benzamides 17a-v, 21 and 22 were synthesized by stirring in pyridine the acid chlorides 16a-e and the appropriate5-R-4-R1-2-aminobenzamide 15a-e and initially evaluated in vitro for antiproliferative activity against the K562 (human chronic myelogenous leukemia) cell line. Some of synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). The most active compounds caused an arrest of K562 cells in the G0-G1 phase of cell cycle and induction of apoptos…

3003Clinical BiochemistryCellPharmaceutical ScienceAntineoplastic AgentsApoptosisAntiproliferative activityPharmacologyG0/G1 arrestBiochemistryArticle2-(2-Phenoxyacetamido)benzamideAntineoplastic AgentStructure-Activity RelationshipBenzamideSettore BIO/10 - BiochimicaCell Line TumorDrug DiscoveryG1 Phase Cell Cycle CheckpointK562 CellmedicineHumansMolecular BiologyCell ProliferationCell growthChemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryApoptosiCell cyclemedicine.diseaseCaspaseSettore CHIM/08 - Chimica FarmaceuticaG1 Phase Cell Cycle CheckpointsLeukemiamedicine.anatomical_structureMicroscopy FluorescenceCell cultureApoptosisCaspasesBenzamidesMolecular MedicineDrug Screening Assays AntitumorK562 CellsPro-caspase 3HumanK562 cellsChronic myelogenous leukemiaBioorganicmedicinal chemistry
researchProduct

Knockdown of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells

2019

The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded…

AdultHomeobox protein NANOGDown-RegulationBiologyArticleCatalysisSettore MED/13 - Endocrinologialcsh:ChemistryInorganic ChemistrySOX2human adipose stem cellHumansCell Self RenewalPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyCells CulturedSpectroscopyCell Proliferationmolecular_biologyCell growthOrganic ChemistryMesenchymal stem cellDNMT1lentiviral transductionCell DifferentiationMesenchymal Stem CellsNanog Homeobox ProteinGeneral MedicineMiddle AgedCell cycleG1 Phase Cell Cycle CheckpointsComputer Science ApplicationsCell biologySettore MED/18 - Chirurgia GeneraleNANOGlcsh:Biology (General)lcsh:QD1-999Gene Knockdown Techniquesembryonic structures<i>NANOG</i>Female<i>DNMT1</i>CDKN1Bbiological phenomena cell phenomena and immunityStem cellcell cycle regulationAdult stem cell
researchProduct

Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction

2020

Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1&ndash

0301 basic medicineautophagyRMCell cycle checkpointDNA RepairDNA damageArtesunateCell Cycle ProteinsArticlegrowth inhibition03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumormedicineHumansddc:610Medicine Chinese Traditionalskin and connective tissue diseaseslcsh:QH301-705.5Cell ProliferationCisplatinartesunate (ART)Cell growthAutophagyapoptosisGeneral MedicineCell cycleG1 Phase Cell Cycle Checkpoints030104 developmental biologychemistrylcsh:Biology (General)Urinary Bladder NeoplasmsApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchbladder cancer (BCa)Growth inhibitioncisplatin resistanceMicrotubule-Associated Proteinsmedicine.drug
researchProduct

Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms

2020

In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar …

DenticityCellPharmaceutical Science01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundDrug DiscoveryOrganotin CompoundstriazolopyrimidineCytotoxicityMembrane Potential MitochondrialCytotoxinsapoptosisBiological activityHep G2 CellsG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplasticmedicine.anatomical_structureChemistry (miscellaneous)Mitochondrial MembranesMCF-7 CellsMolecular MedicineCyclin-Dependent Kinase Inhibitor p21crystal structurein vitro anticancer activityPyrimidineCell SurvivalStereochemistryorganotin(iv)010402 general chemistryArticlelcsh:QD241-441Inhibitory Concentration 50Structure-Activity Relationshiplcsh:Organic chemistrymedicineHumansPhysical and Theoretical ChemistryMetallodrug010405 organic chemistryLigandOrganic ChemistryTriazolesHCT116 CellsapoptosiG1 Phase Cell Cycle Checkpoints0104 chemical sciencesPyrimidineschemistrymetallodrugsCell cultureApoptosisDrug DesignTumor Suppressor Protein p53Reactive Oxygen SpeciesMolecules
researchProduct

Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies.

2020

In vitro viability assays against a representative panel of human cancer cell lines revealed that polyamines L1a and L5a displayed remarkable activity with IC50 values in the micromolar range. Preliminary research indicated that both compounds promoted G1 cell cycle arrest followed by cellular senescence and apoptosis. The induction of apoptotic cell death involved loss of mitochondrial outer membrane permeability and activation of caspases 3/7. Interestingly, L1a and L5a failed to activate cellular DNA damage response. The high intracellular zinc-chelating capacity of both compounds, deduced from the metal-specific Zinquin assay and ZnL2+ stability constant values in solution, strongly sup…

Antineoplastic AgentsApoptosis01 natural sciences03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoveryPolyaminesHumansCytotoxicityCaspase030304 developmental biologyChelating Agents0303 health sciencesbiologyMolecular StructureChemistryRational designG1 Phase Cell Cycle Checkpoints0104 chemical sciencesCell biology010404 medicinal & biomolecular chemistryZincModels ChemicalApoptosisCell cultureDrug Designbiology.proteinMolecular MedicineQuantum TheoryDrug Screening Assays AntitumorPolyamineG1 phaseIntracellularJournal of medicinal chemistry
researchProduct

TORC1 controls G1–S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway

2015

The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex.…

BioquímicaBiologiaSaccharomyces cerevisiae ProteinsImmunoblottingGeneral Physics and AstronomyCell Cycle ProteinsSaccharomyces cerevisiaeMechanistic Target of Rapamycin Complex 1ArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineCyclin-dependent kinaseCyclinsImmunoprecipitationProtein Phosphatase 2Cell division control protein 4PhosphorylationProtein kinase ACyclin-Dependent Kinase Inhibitor Proteins030304 developmental biology0303 health sciencesMultidisciplinarybiologyTOR Serine-Threonine KinasesUbiquitin-Protein Ligase ComplexesGeneral ChemistryBlotting NorthernFlow CytometryG1 Phase Cell Cycle CheckpointsSic1Cyclin-Dependent KinasesCell biologyBiochemistryMultiprotein Complexes030220 oncology & carcinogenesisUbiquitin ligase complexbiology.proteinIntercellular Signaling Peptides and ProteinsPhosphorylationTOR Serine-Threonine KinasesMitogen-Activated Protein KinasesPeptidesProtein KinasesCyclin-dependent kinase inhibitor proteinNature Communications
researchProduct

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct